Search for an Anomalous Excess of Electron Neutrino Interactions in MicroBooNE and New Constraints on eV-Scale Sterile Neutrinos

Xiangpan Ji (BNL)

On behalf of the MicroBooNE collaboration

Neutrino Oscillation Experiments

- > 50 years
- > 30 experiments
- > Phase space over tens of orders of magnitude

 Majority of the experimental results are consistent with the "standard" three-flavor neutrino framework

 Several "anomalies" hint at least an additional flavor of neutrinos -- eV-scale light sterile neutrinos

Experimental Anomalies

Experiment	Channel
GALLEX/SAGE, BEST (radioactive source), Gallium anomaly	$\nu_e ightarrow \nu_e$
Neutrino-4 reactor expt.	$\bar{\nu}_e \rightarrow \bar{\nu}_e$
LSND anomaly	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$
MiniBooNE anomaly	$ \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} $ $ \nu_{\mu} \rightarrow \nu_{e} $

- Neutrino disappearance expts: more deficit than expectation
- Neutrino appearance expts: more excess than expectation

MiniBooNE Anomaly: Low Energy Excess (LEE)

MiniBooNE (2002-2019) observed a low energy excess (LEE) of electromagnetic events with 4.8σ significance.

MiniBooNE Cherenkov detector unable to distinguish photons and electrons, and unable to detect hadronic final-state particles below Cherenkov threshold.

the Micro Booster Neutrino Experiment (MicroBooNE)

MicroBooNE @ Fermilab

Liquid Argon Time Projection Chamber (LArTPC)

Capable of identifying different species of particles and reconstructing 3D images with fine-grained information

- Neutrino vertex
- Particle flow (mother-daughter relationship)
- Track (μ , π , p etc.) vs shower (e, γ EM cascade)
- \circ e vs γ (e⁺e⁻ pair production) separation
 - Gap between shower start point and neutrino vertex?
 - dE/dx in shower stem (1 MIP vs 2 MIPs)

LArTPC: high-resolution tracking + fully active calorimeter

Examine of MiniBooNE LEE

Or other unknown process?

Model of eLEE for the search in MicroBooNE (electron Low Energy Excess)

- eLEE is built upon the intrinsic v_e as a function of neutrino energy
 - Unfolded from MiniBooNE observation and applied to MicroBooNE
- · One normalization parameter 'x' built in the model

MiniBooNE
$$x = \begin{cases} 1 \pm 0.08 \text{ (stat.)} \\ 1 \pm 0.21 \text{ (full)} \end{cases}$$

Since turning on in 2015, MicroBooNE has amassed the largest sample of neutrino interactions on argon in the world

In this talk, I will present results based on $\sim 7 \times 10^{20}$ protons on target (POT) from Run 1-3.

Challenging v_e Selection

Cosmic-ray muon (5.5 kHz)

@ MicroBooNE
operating near-surface

BNB neutrino flux ~0.5% ν_e /anti- ν_e , over 99% ν_μ /anti- ν_μ

An eLEE-sensitive ν_e selection (CC interactions) requires \gtrsim 99.999% rejection of cosmic-ray muons and \gtrsim 99.9% rejection of other ν background

Developed advanced cosmic rejection techniques, event reconstruction and PID algorithms to exploit LArTPC capability to select ν_e events

Three independent eLEE searches

Targeting different final states with different novel reconstruction approaches developed in MicroBooNE

Restricting to quasi-elastic kinematics: 1e1p,
 Deep-learning-based reconstruction

Phys. Rev. D105, 112003 (2022)

- MiniBooNE like-final state: 1eNp0π and 1e0p0π,
 Pandora-based reconstruction
- All ν_e final states: 1eX,
 Wire-Cell reconstruction

Three independent eLEE searches

Targeting different final states with different novel reconstruction approaches developed in MicroBooNE

Restricting to quasi-elastic kinematics: 1e1p,
 Deep-learning-based reconstruction

Phys. Rev. D105, 112003 (2022)

MiniBooNE like-final state: 1eNp0π and 1e0p0π,
 Pandora-based reconstruction

Phys. Rev. D105, 112004 (2022)

• All v_e final states: 1eX, Wire-Cell reconstruction

Three independent eLEE searches

Targeting different final states with different novel reconstruction approaches developed in MicroBooNE

Restricting to quasi-elastic kinematics: 1e1p,
 Deep-learning-based reconstruction

Phys. Rev. D105, 112003 (2022)

 MiniBooNE like-final state: 1eNp0π and 1e0p0π, Pandora-based reconstruction

Phys. Rev. D105, 112004 (2022)

• All ν_e final states: 1eX, Wire-Cell reconstruction

1e1p candidate data event

e

p

µBooNE

RUN 8617 SUBRUN 46 EVENT 2328

Phys Rev. D105, 112005 (2022)

General Analysis Procedure

- Blind analysis (topological characteristics + kinematics sideband)
- NuMI neutrino-beam data validation
- Mock data study

Unblinded Results

- Unblinded in summer 2021
- No observation of v_e candidate excess in low energy region, except for the low- v_e -purity $(1e0p0\pi)$ channel

Phys. Rev. D105, 112003 (2022)
Phys. Rev. D105, 112004 (2022)
Phys. Rev. D105, 112005 (2022)
Phys. Rev. Lett. 128, 241801 (2022)

Unblinded Results

Unblinded in summer 2021

• No observation of v_e candidate excess in low energy region, except for the low- v_e -purity $(1e0p0\pi)$ channel

Phys. Rev. D105, 112003 (2022)
Phys. Rev. D105, 112004 (2022)
Phys. Rev. D105, 112005 (2022)
Phys. Rev. Lett. 128, 241801 (2022)

Overview of the Systematic Uncertainties

15-20% cross-section uncertainty

10-20% detector response uncertainty

5-10% flux uncertainty (same treatment as MiniBooNE)

ightharpoonup Apply data constraints from the in-situ measurements of ν_{μ} and other dedicated background sidebands to suppress the systematic uncertainties

- Cross-section: MicroBooNE Genie tune, Phys. Rev. D 105, 072001
- ✓ Detector systematics: data-driven, EPJC 82, 454 (2022)

Inclusive 1eX analysis: Phys. Rev. D105, 112005 (2022) similar constraint procedure used in other two analyses

eLEE Search Results

Phys. Rev. D105, 112003 (2022)
Phys. Rev. D105, 112004 (2022)
Phys. Rev. D105, 112005 (2022)
Phys. Rev. Lett. 128, 241801 (2022)

- Observed ν_e candidate rates are statistically consistent with the predicted background rates in the LEE region
- With exception of the low- v_e -purity $(1e0p0\pi)$ channel, the hypothesis that v_e events are fully responsible for the median MiniBooNE LEE is rejected at > 97% C.L.; > 3σ in the inclusive 1eX channel

MiniBooNE Excess and Sterile Neutrinos

- The MicroBooNE eLEE result disfavors the MiniBooNE anomaly originating from a pure ν_e excess.
- The existence of sterile neutrinos cannot be ruled out by the MicroBooNE eLEE result which is a generic low energy v_e excess search.

The MicroBooNE eLEE results can be reinterpreted under a sterile neutrino oscillation hypothesis:

a combination of short-baseline ν_e appearance and disappearance

3+1 Neutrino Oscillation Framework

The PMNS matrix is extended to 4x4 unitary matrix, and is parameterized as following

$$U_{PMNS} = R_{34}(\theta_{34}, \delta_{34}) R_{24}(\theta_{24}, \delta_{24}) R_{14}(\theta_{14}, 0) R_{23}(\theta_{23}, 0) R_{13}(\theta_{13}, \delta_{13}) R_{12}(\theta_{12}, 0)$$

• The effective mixing angles $\theta_{\alpha\beta}$ for short-baseline oscillations are defined below

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \delta_{\alpha\beta} + (-1)^{\delta_{\alpha\beta}} \cdot \sin^2 2\theta_{\alpha\beta} \cdot \sin^2 \left(1.267 \frac{\Delta m_{41}^2 (\text{eV}^2) L(\text{m})}{E(\text{MeV})} \right)$$

 v_e disappearance $(v_e \rightarrow v_e)$: $\sin^2 2\theta_{ee} = \sin^2 2\theta_{14}$

 ν_{μ} disappearance $(\nu_{\mu} \rightarrow \nu_{\mu})$: $\sin^2 2\theta_{\mu\mu} = 4\cos^2 \theta_{14}\sin^2 \theta_{24} (1 - \cos^2 \theta_{14}\sin^2 \theta_{24})$

 v_e appearance $(v_{\mu} \rightarrow v_e)$: $\sin^2 2\theta_{\mu e} = \sin^2 2\theta_{14} \sin^2 \theta_{24}$

• In MicroBooNE analysis, the above three oscillation effects are applied to all ν_e and ν_μ events; the ν_μ appearance ($\nu_e \to \nu_\mu$) is ignored because of tiny $\frac{\nu_e \; {
m flux \; rate}}{\nu_\mu \; {
m flux \; rate}} \sim 0.005$

3+1 Oscillation Analysis using Wire-Cell Inclusive Selections

- Three oscillation effects (ν_e appearance, ν_e and ν_μ disappearance) are <u>simultaneously</u> <u>applied</u> on multiple selection channels including ν_e CC, ν_μ CC, and NC (same inputs as the inclusive 1eX eLEE search)
- Considering full 3+1 oscillation, the BNB data result is found to be consistent with the 3ν hypothesis within 1σ following the Feldman-Cousins approach
- 95% C.L. exclusion limits are calculated using the frequentist CLs method

MicroBooNE 3+1 Oscillation Analysis Results: $\Delta m_{41}^2 \text{ vs. sin}^2 2\theta_{ee}$

MicroBooNE 3+1 Oscillation Analysis Results: $\Delta m_{41}^2 \text{ vs. sin}^2 2\theta_{\mu e}$

- Part of the LSND allowed region is excluded by the MicroBooNE 3+1 analysis 95% CL limit
- v_e appearance-only, more stringent limit. However, it is physically not allowed in the 3+1 framework. (non-zero v_e appearance requires both v_e and v_μ disappearance)

Cancellation of ν_e Appearance and ν_e Disappearance \rightarrow Degeneracy of Oscillation Parameters

• Observed v_e events are a combination result of v_e appearance and disappearance

$$N_{\nu_e} = N_{\text{intrinsic } \nu_e} \cdot P_{\nu_e \to \nu_e} + N_{\text{intrinsic } \nu_{\mu}} \cdot P_{\nu_{\mu} \to \nu_e}$$
$$= N_{\text{intrinsic } \nu_e} \cdot \left[1 + (R_{\nu_{\mu}/\nu_e} \cdot \sin^2 \theta_{24} - 1) \cdot \sin^2 2\theta_{14} \cdot \sin^2 \Delta_{41} \right]$$

- Degeneracy when $\sin^2\theta_{24}$ approaches R_{ν_e/ν_μ} (the ratio of beam intrinsic ν_e and ν_μ flux)
- Sensitivity/exclusion limits become much worse around the degeneracy point

	$R_{ u_e/ u_\mu}$ (degeneracy $\sin^2 heta_{24}$ value)
MicroBooNE w. BNB	~0.005 (average)

Breaking the Degeneracy

• Observed v_e events are a combination result of v_e appearance and disappearance

$$N_{\nu_e} = N_{\text{intrinsic } \nu_e} \cdot P_{\nu_e \to \nu_e} + N_{\text{intrinsic } \nu_\mu} \cdot P_{\nu_\mu \to \nu_e}$$
$$= N_{\text{intrinsic } \nu_e} \cdot \left[1 + (R_{\nu_\mu/\nu_e} \cdot \sin^2 \theta_{24} - 1) \cdot \sin^2 2\theta_{14} \cdot \sin^2 \Delta_{41} \right]$$

Degeneracy when $\sin^2 \theta_{24}$ approaches R_{ν_e/ν_μ} (the ratio of beam intrinsic ν_e and ν_μ flux)

	$R_{ u_e/ u_\mu}$ (degeneracy $\sin^2 heta_{24}$ value)
MicroBooNE w. BNB	~0.005 (average)
MicroBooNE w. NuMI	~0.04 (average)

Two neutrino beams at MicroBooNE:

- BNB, on-axis, baseline ~470m
- NuMI, off-axis, baseline ~680m

Significant difference in the numu/nue ratio in BNB and NuMI
→ mitigate the degeneracy

MicroBooNE 3+1 Oscillation Analysis Sensitivities BNB and BNB+NuMI

- Sensitivity is significantly improved (overall a factor of 2) when combining both BNB and NuMI (mainly due to **degeneracy mitigation**)
- BNB+NuMI data result is coming soon, expected to be sensitive to the Gallium/Neutrino-4 results, and LSND results

3+1 Oscillation Analysis using Deep-learning-based v_e/v_μ Selections

- Uses CCQE-dominated 98% pure ν_{μ} selection (deep-learning-based 1 μ 1p selection)
- The BNB data (Run 1-3) was found to be consistent with the 3ν (null) hypothesis
- MicroBooNE's Feldman-Cousins allowed region, compared to our sensitivity, is shown against the MiniBooNE shape-only exclusion limit

• A full 3+1 analysis using deep-learning-based ν_e and ν_μ selections is coming.

Summary

- MicroBooNE's first searches for low energy excess found no evidence of excessive ν_e to explain the MiniBooNE excess
 - Disfavor pure v_e excess as a sole source of MiniBooNE excess at 3σ level
- Full 3+1 oscillation analyses were carried out to interpret the MicroBooNE eLEE results under a sterile neutrino oscillation hypothesis
 - The data (50% BNB total dataset) was found to be consistent with three-flavor hypothesis and exclusion limits were calculated using a frequentist approach
 - Unitizing both BNB and NuMI data, the 3+1 analysis will be sensitive to Gallium/Neutrino-4 and LSND results
- Further investigation on MiniBooNE excess, searches for photon-like events, other BSM particles/process (e.g. e⁺e⁻), oscillation analysis are underway

Other MicroBooNE NuFACT 2022 Talks

WG5: Beyond PMNS

• Kathryn Sutton, MicroBooNE's Search for Anomalous Single-Photon Production in Neutrino Scattering

WG2: Neutrino Scattering Physics

- Afroditi Papadopoulou, Recent MicroBooNE cross-section results: neutrino-induced baryon production
- Elena Gramellini, Recent MicroBooNE cross-section results: inclusive channels and pion production
- Marco Martini, Investigation of the MicroBooNE inclusive neutrino cross sections on Argon

WG6: Detectors

Wanwei Wu, Energy Reconstruction and Calibration of the MicroBooNE LArTPC

Posters

- Christopher Thorpe, Measurement of the Λ Baryon Production Cross Section in Neutrino Interactions with MicroBooNE
- Meghna Bhattacharya, A Measurement of Neutrino Induced Charged Current Neutral Pion Production in the MicroBooNE Experiment
- Julia Book, Measurement of double-differential cross sections for mesonless charged-current neutrino scattering on argon with MicroBooNE

Thank you!

Backup

Principle of Single-Phase Liquid Argon Time Projection Chamber (LArTPC)

- ~mm scale position resolution with multiple 1D wire readouts
- Particle identification (PID) with energy depositions and topologies

eLEE Search Results

Total selected events and overlap

	1e1p CCQE	$1eNp0\pi + \\ 1e0p0\pi$	$ \begin{array}{c} 1eXp\\ \text{(Fully contained)} \end{array} $
Reconstructed E_{ν} (MeV)	200-1200	10-2390	0-2500
1e1p CCQE	25	9	14
$1eNp0\pi + 1e0p0\pi$		98	46
1eXp (Fully contained)			338

Signal-enhanced region comparison

	1e1p CCQE	$1eNp0\pi$	$1e0p0\pi$	1eX
$E_{\nu} \; ({\rm MeV})$	200-500	150-650	150-650	0-600
Predicted, no eLEE	8.8 ± 3.0	30.4 ± 6.1	19.0 ± 5.3	69.6 ± 9.4
Predicted, w/ eLEE	18.5 ± 4.4	39.0 ± 6.8	22.3 ± 5.7	104 ± 12
Observed	6	21	27	56

Energy Resolution

Neutrino energy reconstruction primarily follows a calorimetric method

fully contained v_e CC

fully contained ν_{μ} CC

BNB and NuMI Neutrino Fluxes

CL_s method

$$CL_s = CL_{s+b}/CL_b = 1 - \alpha$$
 (confidence level)

Degeneracy and Its Mitigation

BNB Run 1-3 NuMI Run 1

Mitigation by BNB+NuMI